Capacitance Review Sheet

AP Physics, G Period Kamryn Chan

Background

Capacitance is a measure of charge stored on a conductor at a given electric potential. This sheet will review combinations of capacitors, dielectrics, and important formulas.

Formulas

$$C = \frac{Q}{V} \quad \text{definition of capacitance} \qquad C = \kappa \mathcal{E}_0 \frac{A}{d} \quad \text{capacitance of parallel plate}$$

$$C = \mathcal{E}_0 \frac{A}{d} \quad \text{capacitance of a parallel plate} \qquad U = \frac{1}{2} CV^2 \quad \text{electric potential energy}$$

$$\frac{1}{Ceq} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots \quad \text{equivalent capacitance}$$

$$\text{In series} \qquad \qquad \frac{1}{2} QV$$

$$\text{Ceq} = C_1 + C_2 + \cdots \quad \text{equivalent capacitance}$$

$$\text{in parallel}$$

$$\text{Key concepts/terms}$$

Capacitance is a positive value that measures a conductor's ability to hold charge with the unit Farads. By definition, it is. $\frac{Q}{V} = \frac{Coulombs}{Volts}$

How to find capacitance:

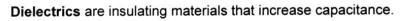
- 1. Assume charges
- 2. Find the electric potential difference, $V = \int E \cdot dr$
 - a. Use Gauss's Law to determine the electric field, $\int E \cdot dA = \frac{q_{enclosed}}{\epsilon_0}$
- 3. Plug information into the definition of capacitance, $C = \frac{Q}{2}$

Capacitors in series

Capacitors in series share common charge, q

Capacitors in parallel

Capacitors in parallel have a common voltage drop, V. They are connected with a neighbor in two places.



The dielectric constant, K, varies for different materials. It is always greater than 1.

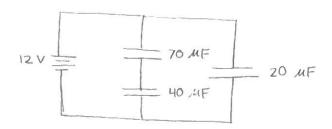


vander Waals effect creates a weak E-fld

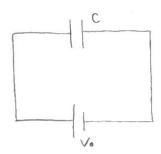
Cincreases

Problems

1. Easy: Find the equivalent capacitance of the system.



- 2. Medium: A simple circuit is illustrated below. What happens to the capacitance, voltage, charge, electric field, and energy in each situation? Does it increase, decrease, or stay the same?
 - a. A dielectric is placed in the capacitor.
 - b. The plates of the capacitor are pulled further apart.
 - c. The plates of the capacitor are exchanged for larger plates.

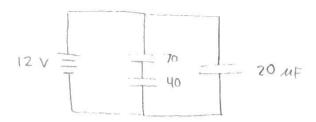


3. **Hard:** Determine the capacitance of the coaxial cable shown below. Then, the capacitor is connected to a battery with potential difference, 3V. What is the maximum energy the capacitor can store?



Solutions

1. Easy



The 70 and 40 MF capacitors are in senes, and they are both in parallel with the 25 MF capacitor.

First, we find Ceq of the two in senes: $\frac{1}{Ceq} = \frac{1}{C_1} + \frac{1}{C_2}$

$$Ceq = \left(\frac{1}{70} + \frac{1}{40}\right)^{-1}$$

Ceq = 25.45 MF

Now, we can find Ceq of the system using the capacitors in parallel relationship. $Ceq = C_1 + C_2$

2. Medium

a. Dielectric

Capacitance - increases by formula $C = \kappa \epsilon_0 \frac{A}{d}$ since κ is always > 1. Voltage stays the same and is supplied by the battery. Charge increases by $C = \frac{Q}{V}$; C increases, V stays the same, so Q must also increase. Electric field stays the same since $E = \frac{V}{d}$ and V and d don't change. Energy increases since $V = \frac{1}{2}CV^2$ and C increases.

b. Plates pulled apart

Capacitaince decreases since $C = \kappa \varepsilon_0 \frac{1}{4}$ and d increased. Voltage stays the same since the battery is still connected. Charge decreases by $C = \frac{Q}{V}$; C decreases, V is the same, so Q also decreases. Electric field decreases since $E = \frac{V}{4}$ and Q increased. Every decreases since $V = \frac{1}{2}CV^2$ and Q decreased.

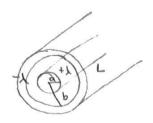
C. Larger plates

Capacitance increases since $C = kE \cdot \frac{A}{d}$ and A increased. Voltage stays the same – the battery is still connected. Charge increases by $C = \frac{Q}{V}$; Cincreases, V is the same, so Q also increases. Electric field stays the same since $E = \frac{V}{d}$ and reither V nor d changed. Energy increases since $V = \frac{1}{2}CV^2$ and C increased.

3. Hard

We need to use the approach here.

First, he use Gauss's Law to determine the E-fld.



$$E(2\pi r L) = + \frac{\lambda L}{\xi_0}$$

$$E = \frac{\lambda}{2\pi v \epsilon_0}$$
, E-fld is outward

Next, we can integrate the E-fld to get the potential difference.

$$V = \int_{r=a}^{r=b_{i}} \frac{\lambda}{2\pi r \epsilon_{o}} dr$$

 $V = \int_{r=0}^{r=b} \frac{\lambda}{2\pi r\epsilon} dr$ Because the E-fld is outward, we integrate from inside to outer

$$V = \frac{1}{2\pi\epsilon_0} \int_a^b \frac{1}{r} dr$$

$$V = \frac{\lambda}{2\pi\epsilon_0} \ln b - \ln a = \frac{\lambda}{2\pi\epsilon_0} \ln \frac{b}{a}$$

Now, we can plug stuff in to the definition

$$C = \frac{Q}{V}$$

$$C = \frac{\lambda L}{\frac{\lambda}{2\pi\epsilon_0} \ln \frac{b}{a}} = \frac{2\pi\epsilon_0 L}{\ln \frac{b}{a}}$$

To find electric potential energy:

$$U = \frac{1}{2}CV^2$$

$$U = \frac{1}{2} \left(\frac{2\pi \epsilon_6 L}{\ln \frac{k}{a}} \right) \left(3V \right)^2$$

$$U = \frac{q}{2} \frac{\lambda^2 L}{2\pi \epsilon_0} \ln \frac{b}{q}$$

11 42 1 (